Biofilm formation is ubiquitous in nature, where microorganisms attach to surfaces or to each other and form highly adapted and protected communities. Biofilms also occur in technical systems like drinking water supply as well as in marine and clinical environments. In these cases biofilms are undesired because of their ability to cause biofouling, biocorrosion, contaminations and infections. Until today, there is no standard method of characterizing anti-biofilm treatment strategies in order to optimize cleaning or disinfection protocols. In this project we have developed such a system based on electrical impedance spectroscopy (EIS) and amperomertic current measurement. The system supports up to 96 measurement channels. The integrated pneumatic pumping module, allowing fully automated pumping for probing of different agents. This modular sensor system is highly adaptable and suitable for a broad range of microbiological applications.
System overview
A+B: Intensity of fluorescence images at different points in time (0.2 d, 1 d ,2 d and 3 d were compared to the impedance signal (line). C: Amperometric signal was compared to exoenzymatic activity of the biofilm.
Associated Publications
Journal Papers
C. Richter, S. Schneider, B. E. Rapp, S. Schmidt, M. Schüßler, R. Jakoby, J. Bruchmann, M. Bischer, T. Schwartz: "Towards Biofilm Spectroscopy – A Novel Microfluidic Approach for Characterizing Biofilm Subpopulation by Microwave-Based Electrical Impedance Spectroscopy", Frequenz, 72, 3, 123-134, 2018 (invited).
J. Bruchmann, K. Sachsenheimer, B. E. Rapp, T. Schwartz: “Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity”, PLOS ONE, 10, 2, 2015 | Link
L. Pires, K. Sachsenheimer, T. Kleintschek, T. Schwartz, B. E. Rapp: “Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor”, Biosensors and Bioelectronics, 47, 15, 157-163, 2013 | Link
Reviews
Books and Book chapters
B. E. Rapp: "Electrochemical Methods for Biomass and Biocorrosion Monitoring", book chapter within "Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry", Elsevier, 2018 | Link
Conference Contributions
S. Schmidt, J. Bruchmann, C. Richter, M. Schüßler, R. Jakoby, T. Schwartz, B. E. Rapp: "A microfluidic approach for characterizing biofilm growth by microwave-based electrical impedance spectroscopy", poster, 22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS), Kaohsiung, Taiwan, 2018.
K. Sachsenheimer, J. Bruchmann, T. Schwartz, B. E. Rapp: "Integrated peristaltic pump for probing a biofilm online monitoring system", poster, 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS), Dublin, Ireland, 2016
J. Bruchmann, K. Sachenheimer, T. Schwartz, B. E. Rapp: “Novel microfluidic system for online monitoring of biofilm dynamics by electrical impedance spectroscopy and amperometry”, talk, SPIE Photonics West, San Francisco, USA, 2016| Link
J. Bruchmann, K. Sachsenheimer, B. E. Rapp, T. Schwartz: “Real-time biofilm monitoring in a multichannel online platform“, talk, Eurobiofilms, Brno, Czech Republic, 2015
L. Pires, N. Braunegger, G. Davidson, C. Neumann, B. E. Rapp: “Novel electrochemical biosensor surface modification method based on photobleaching”, poster, 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS), San Antonio, USA, 2014
J. Bruchmann, K. Sachsenheimer, T. Kleintschek, T. Schwartz, B. E. Rapp: “Novel microfluidic biosensor for online monitoring of biofilm formation by EIS and amperometry”, poster, 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS), San Antonio, USA, 2014
J. Bruchmann, K. Sachsenheimer, B. E. Rapp, T. Schwartz: “Novel microfluidic biosensor for online monitoring of biofilm formation”, talk, DGHM/VAAM Microbiology and Infection, Dresden, 2014
J. Bruchmann, K. Sachsenheimer, T. Kleintschek, B. E. Rapp, T. Schwartz: “Novel microfluidic biosensor for online monitoring of biofilm formation”, talk, Biofilms6, Vienna, Austria, 2014
J. Bruchmann, T. Kleintschek, K. Sachsenheimer, L. Pires, T. Schwartz, B. E. Rapp: “Novel microfluidic multichannel biosensor for online monitoring of biofilm formation and activity via electrochemical impedance spectroscopy and amperometry”, poster, Eurobiofilms, Ghent, Belgium, 2013
T. Kleintschek, K. Sachsenheimer, L. Pires, T. Schwartz, B. E. Rapp: “Monitoring of biofilm growth and activity using a scalable microfluidic electrochemical biosensor”, poster, 6th ASM Conference on Biofilms, Orlando, USA, 2012
K. Sachsenheimer, L. Pires, T. Kleintschek, T. Schwartz, B. E. Rapp: “Monitoring biofilm growth and activity using a scalable multichannel electrochemical biosensor”, poster, 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS), Okinawa, Japan, 2012
L. Pires, A. Heckel, K. Sachsenheimer, B. E. Rapp: “Multichannel impedimetric biosensor platform for label-free affinity assays using electrically conductive functional polymers”, poster, 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS), Okinawa, Japan, 2012
T. Kleintschek, K. Sachsenheimer, H.-G. Lemaire, U. Obst, B. E. Rapp, T. Schwartz: “How do novel fungal components contribute to biofilm removal”, talk, BIOFILMS 5, Paris, France, 2012
K. Sachsenheimer, L. Pires, M. Adamek, T. Schwartz, B. E. Rapp: “Monitoring biofilm growth using a scalable multichannel impedimetric biosensor”, poster, 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS), Seattle, USA, 2011
M. Adamek, K. Sachsenheimer, T. Schwartz, B. E. Rapp: “Impedimetric sensor cell for monitoring biofilm growth”, talk, Eurobiofilms, Copenhagen, Denmark, 2011